Home
Class 12
MATHS
Let f(x) is a function continuous for al...

Let f(x) is a function continuous for all `x in R` except at x = 0 such that `f'(x) lt 0, AA x in (-oo, 0) and f'(x) gt 0, AA x in (0, oo)`. If `lim_(x rarr 0^(+)) f(x) = 3, lim_(x rarr 0^(-)) f(x) = 4 and f(0) = 5`, then the image of the point (0, 1) about the line, `y.lim_(x rarr 0) f(cos^(3) x - cos^(2) x) = x. lim_(x rarr 0) f(sin^(2) x - sin^(3) x)`, is

A

`((12)/(25),(-9)/(25))`

B

`((12)/(25),(9)/(25))`

C

`((16)/(25),(-8)/(25))`

D

`((24)/(25),(-7)/(25))`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Lim_(xrarr0)(f(Cosx))/(x^2) =? where f(x) = (1-x)/(1+x)

If f'(x)=x^(2)+5 and f(0)=-1 then f(x)=...

The integer n for which lim_(x rarr 0) ((cos x-1) ( cos x - e^x))/x^n is a finite non-zero number is :

If f(x) + f(y) = f((x+y)/(1-xy)) for all x, y in R (xy ne 1) and lim_(x rarr 0) (f(x))/(x) = 2 , then

f(x+ y) = f(x) f(y) , For AA x and y . If f(3)= 3 and f'(0) =11 then f'(3)= …….

If f(x) = 0 for x lt 0 and f(x) is differentiable at x = 0, then for x gt 0, f(x) may be

Let f(x+y)=f(x)+f(y) for all xa n dydot If the function f(x) is continuous at x=0, show that f(x) is continuous for all xdot

If (d(f(x)))/(dx) = e^(-x) f(x) + e^(x) f(-x) , then f(x) is, (given f(0) = 0)

Find lim_(xrarr0)f(x) and lim_(xrarr1)f(x) , where f(x)={{:(6x+3",",xle0),(x+6",",xgt0):}

f: [0,oo) rarr [0,oo) , f(x) = x/(1+x) then the function f is .........