Home
Class 12
MATHS
If f(x) + f(y) = f((x+y)/(1-xy)) for all...

If `f(x) + f(y) = f((x+y)/(1-xy))` for all `x, y in R (xy ne 1) and lim_(x rarr 0) (f(x))/(x) = 2`, then

A

`f((1)/(sqrt(3)))=(pi)/(3)`

B

`f((1)/(sqrt(3))) =-(pi)/(3)`

C

`f'(1) = 1`

D

`f'(1) = -1`

Text Solution

Verified by Experts

The correct Answer is:
A, C
Promotional Banner

Similar Questions

Explore conceptually related problems

If f((x)/(y))=(f(x))/(f(y)) for all x, y in R, y ne 0 and f'(x) exists for all x, f(2) = 4. Then, f(5) is

y = Ax : xy' = y (x ne 0)

If f is a function satisfying f (x +y) = f(x) f(y) for all x, y in N such that f(1) = 3 and sum _(x=1)^nf(x)=120 , find the value of n.

If f is a function satisfying f(x+y)=f(x)xxf(y) for all x ,y in N such that f(1)=3 and sum_(x=1)^nf(x)=120 , find the value of n .

If f(x-y),f(x)*f(y),f(x+y) are in A.P for all x,y in R " and " f(0) ne 0 , then (a) f'(x) is an even function (b)f'(1)+f'(-1)=0 (c)f'(2)-f'(-2)=0 (d)f'(2)-f'(-2)=0

If f(x) satisfies the relation, f(x+y)=f(x)+f(y) for all x,y in R and f(1)=5, then find sum_(n=1)^(m)f(n) . Also, prove that f(x) is odd.

Let f(x) be a real valued function such that f(0)=1/2 and f(x+y)=f(x)f(a-y)+f(y)f(a-x), forall x,y in R , then for some real a, (a)f(x) is a periodic function (b)f(x) is a constant function (c) f(x)=1/2 (d) f(x)=(cosx)/2

Let f(x) be continuous and differentiable function for all reals and f(x + y) = f(x) - 3xy + f(y). If lim_(h to 0)(f(h))/(h) = 7 , then the value of f'(x) is

If 2f(x)=f(x y)+f(x/y) for all positive values of x and y,f(1)=0 and f'(1)=1, then f(e) is.

If f:R rarr R satisfying f(x-f(y))=f(f(y))+xf(y)+f(x)-1, for all x,y in R , then (-f(10))/7 is ……… .