Home
Class 12
MATHS
The number of points where f(x) = [sin x...

The number of points where `f(x) = [sin x + cosx]` (where [.] denotes the greatest integer function) `x in (0,2pi)` is not continuous is (A) 3 (B) 4 (C) 5 (D) 6

Text Solution

Verified by Experts

The correct Answer is:
5
Promotional Banner

Similar Questions

Explore conceptually related problems

domin of f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is

If [x]^(2)- 5[x] + 6= 0 , where [.] denote the greatest integer function, then

Sketch the curves (ii) y=[x]+sqrt(x-[x]) (where [.] denotes the greatest integer function).

The period of the function f(x)=Sin(x +3-[x+3]) where [] denotes the greatest integer function

If f(x)=cos[pi/x] cos(pi/2(x-1)) ; where [x] is the greatest integer function of x ,then f(x) is continuous at :

Find the domain and range of f(x)=log[ cos|x|+1/2] ,where [.] denotes the greatest integer function.

Find the number of solution of the equations |cos x |=[x] , (where [.] denotes the greatest integer function ).

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then