Home
Class 12
MATHS
Prove that f(x) = [tan x] + sqrt(tan x -...

Prove that `f(x) = [tan x] + sqrt(tan x - [tan x])`. (where [.] denotes greatest integer function) is continuous in `[0, (pi)/(2))`.

Text Solution

Verified by Experts

The correct Answer is:
`[0, pi//2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Sketch the curves (ii) y=[x]+sqrt(x-[x]) (where [.] denotes the greatest integer function).

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is

If [x]^(2)- 5[x] + 6= 0 , where [.] denote the greatest integer function, then

find the domain of f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

The number of points where f(x) = [sin x + cosx] (where [.] denotes the greatest integer function) x in (0,2pi) is not continuous is (A) 3 (B) 4 (C) 5 (D) 6

The period of the function f(x)=Sin(x +3-[x+3]) where [] denotes the greatest integer function

If [sin x]+[sqrt(2) cos x]=-3 , x in [0,2pi] , (where ,[.] denotes th greatest integer function ), then

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

Range of f(x)=[1/(log(x^(2)+e))]+1/sqrt(1+x^(2)), where [*] denotes greatest integer function, is