Home
Class 12
MATHS
Let f : R^(+) rarr R satisfies the funct...

Let `f : R^(+) rarr R` satisfies the functional equation `f(xy) = e^(xy - x - y) {e^(y) f(x) + e^(x) f(y)}, AA x, y in R^(+)`. If f'(1) = e, determine f(x).

Text Solution

Verified by Experts

The correct Answer is:
`f(x) = e^(x) log |x|`
Promotional Banner

Similar Questions

Explore conceptually related problems

A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y), AA x, y in R . If f'(0) = - 1, then

Let f : R rarr R be the function defined by f(x) = 2x - 2 , AA x in R . Write f^(-1) .

The function f(x)= e^(|x|) is

A derivable function f : R^(+) rarr R satisfies the condition f(x) - f(y) ge log((x)/(y)) + x - y, AA x, y in R^(+) . If g denotes the derivative of f, then the value of the sum sum_(n=1)^(100) g((1)/(n)) is

f(x+ y) = f(x) f(y) , For AA x and y . If f(3)= 3 and f'(0) =11 then f'(3)= …….

Let f : R rarr R be the function defined by f(x) = 1/(2-cosx),AA x inR . Then , find the range of f .

A function f : R to R satisfies the equation f(x+y) = f (x) f(y), AA x, y in R and f (x) ne 0 for any x in R . Let the function be differentiable at x = 0 and f'(0) = 2. Show that f'(x) = 2 f(x), AA x in R. Hence, determine f(x)

Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is

If f : R rarr R be the function defined by f(x) = sin (3x +2) AA x in R . Then , f is invertible .

Let f be a function satisfying f(x+y)=f(x) + f(y) for all x,y in R . If f (1)= k then f(n), n in N is equal to