Home
Class 12
MATHS
Prove that the function f(x) = a sqrt(x ...

Prove that the function `f(x) = a sqrt(x - 1) + b sqrt(2x - 1)-sqrt(2x^(2) - 3x + 1)`, where a + 2b = 2 and `a, b in R` always has a root in `(1, 5) AA b in R`

Text Solution

Verified by Experts

The correct Answer is:
f(c) = 0
Promotional Banner

Similar Questions

Explore conceptually related problems

The range of the function f(x)=sqrt(x-1)+2sqrt(3-x) is

Integrate the functions (4x+2)sqrt(x^(2)+x+1)

Integrate the function 1/(sqrt((x-a)(x-b)))

The domain of the function f(x)=sqrt(x^(2)-5x+6)+sqrt(2x+8-x^(2)) , is

Integrate the function 1/(sqrt(8+3x-x^(2)))

Integrate the function 1/(sqrt(x^(2)+2x+2))

The domain of the function f defined by f(x)= sqrt(4-x) + (1)/(sqrt(x^(2)-1)) is equal to

Integrate the functions 1/(sqrt(x+a)+sqrt(x+b))

Find the domain of f(x)=sqrt(1-sqrt(1-sqrt(1-x^2)))