Home
Class 12
MATHS
A derivable function f : R^(+) rarr R sa...

A derivable function `f : R^(+) rarr R` satisfies the condition `f(x) - f(y) ge log((x)/(y)) + x - y, AA x, y in R^(+)`. If g denotes the derivative of f, then the value of the sum `sum_(n=1)^(100) g((1)/(n))` is

A

5050

B

5510

C

5150

D

1550

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y), AA x, y in R . If f'(0) = - 1, then

The function f :R -> R satisfies the condition mf(x - 1) + nf(-x) = 2| x | + 1 . If f(-2) = 5 and f(1) = 1 find m+n

A function y = f(x) satisfies the condition f(x+(1)/x) =x^(2)+1/(x^2)(x ne 0) then f(x) = ........

A function f : R rarr R satisfies the equation f(x + y) = f(x) . f(y) for all, f(x) ne 0 . Suppose that the function is differentiable at x = 0 and f'(0) = 2. Then,

A function f: R rarr R satisfies the equation f(x+ y)= f(x).f(y) "for all" x, y in R, f(x) ne 0 . Suppose that the function is differentiable at x=0 and f'(0)=2, then prove that f'(x)= 2f(x)

Let f : R rarr R be the function defined by f(x) = 2x - 2 , AA x in R . Write f^(-1) .

A function f:R->R satisfies the relation f((x+y)/3)=1/3|f(x)+f(y)+f(0)| for all x,y in R. If f'(0) exists, prove that f'(x) exists for all x, in R.

Let f:R->R be a function such that f(x+y)=f(x)+f(y),AA x, y in R.

If f is polynomial function satisfying 2+f(x)f(y)=f(x)+f(y)+f(x y)AAx , y in R and if f(2)=5, then find the value of f(f(2))

Range of the function f: R rarr R, f(x)= x^(2) is………