Home
Class 12
MATHS
If (d(f(x)))/(dx) = e^(-x) f(x) + e^(x) ...

If `(d(f(x)))/(dx) = e^(-x) f(x) + e^(x) f(-x)`, then f(x) is, (given f(0) = 0)

A

an even function

B

an odd function

C

neither even nor odd function

D

can't say

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If (d)/(dx)f(x)=cos x +sin x and f(0)=2 , then f(x)=.....

If 2f (x)- 3f((1)/(x))= x^(2) (x ne 0) then f(2)= ……

If f(x)=log_x(lnx) then f'(x) at x=e is

For xne0 ,f(x) = (x-|x|)/(|x|) then f(-1)=0

If f(x)= (x-3)/(x + 1) then f[f {f(x)}] = …….

f(x) = (e^(x)-e^(-x))/(e^(x)+e^(-x))+2 . The inverse of f(x) is ........

If f'(x)=x^(2)+5 and f(0)=-1 then f(x)=...

If f'(x)=3x^(2)-(2)/(x^(3)) and f(1)=0 then find f(x).

If f(x)=|log_(e)|x||," then "f'(x) equals