Home
Class 12
MATHS
Consider the function f(x) = [{:(x{x}+1"...

Consider the function `f(x) = [{:(x{x}+1",","if",0 le x lt 1),(2-{x}",","if",1 le x le 2):}`, where {x} denotes the fractional part function. Which one of the following statements is not correct ?

A

`underset(x rarr 1)(lim) f(x)` exists

B

`f(0) ne f(2)`

C

f(x) is continuous in [0, 2]

D

Rolle's theorem is not applicable to f(x) in [0, 2]

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = {{:(x+{x}+x sin {x}",","for",x ne 0),(0",","for",x = 0):} , where {x} denotes the fractional part function, then

f(x)= {(2x",","if" x lt 0),(0",","if" 0 le x le 1),(4x",","if" x gt 1):}

f(x) = {(3",","if" 0 le x le 1),(4",","if" 1 lt x lt 3),(5",","if" 3 le x le 10):}

f(x)= {(x^(10)-1",","if" x le 1),(x^(2)",","if" x gt 1):}

f(x)= {(-2",","if" x le -1),(2x",","if" -1 lt x le 1),(2",","if " x gt 1):}

Examine the continuity of the function f(x)= {(1+x",","if " x le 2),(5-x",","if" x gt 2):} at x= 2

f(x) = {(x^(3)-3",","if" x le 2),(x^(2)+1 ",","if " x gt 2):}

If f(x)={{:(,x[x], 0 le x lt 2),(,(x-1)[x], 2 le x lt 3):} where [.] denotes the greatest integer function, then (x) is continuous at x=2