Home
Class 12
MATHS
Number of points of non-differentiabilit...

Number of points of non-differentiability of the function `g(x) = [x^2]{cos^2 4x} + {x^2}[cos^2 4x] +x^2 sin^2 4x + [x^2][cos^2 4x] + {x^2}{cos^2 4x}` in `(-50, 50)` where `[x] and {x}` denotes the greatest integer function and fractional part function of x respectively, is equal to :

A

98

B

99

C

100

D

0

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve 1/[x]+1/([2x])= {x}+1/3where [.] denotes the greatest integers function and{.} denotes fractional part function.

cos 4x = cos 2x

domin of f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

The total number of points of non-differentiability of f(x)=max{sin^2 x,cos^2 x,3/4} in [0,10 pi], is

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is

If [sin x]+[sqrt(2) cos x]=-3 , x in [0,2pi] , (where ,[.] denotes th greatest integer function ), then

Differentiate the functions cos x.cos 2x. Cos 3x

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

cos 4x =1- 8 sin ^(2) x cos ^(2) x