Home
Class 12
MATHS
On the interval I=[-2,2], the function f...

On the interval `I=[-2,2]`, the function `f(x)={{:(,(x+1)e^(-((1)/([x])+(1)/(x))),x ne 0),(,0,x=0):}`

A

f(x) is continuous for all values of `x in I`

B

f(x) is continuous for `x in I - {0}`

C

f(x) assumes all intermediate values from f(-2) to f(2)

D

f(x) has a maximum value equal to 3/e

Text Solution

Verified by Experts

The correct Answer is:
B, C, D
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)= {{:(,(x log cos x)/(log(1+x^(2))),x ne 0),(,0,x=0):} then

If f(x) = {{:((1)/(e^(1//x))",",x ne 0),(0",",x = 0):} then

Examine the continuity of the function f(x) = {((e^((1)/(x)))/(1 + e^((1)/(x)))",","if " x ne 0),(0",","if" x = 0):} at x= 0

If f(x) = {{:((sin^(-1)x)^(2)cos((1)/(x))",",x ne 0),(0",",x = 0):} then f(x) is

Examine the continuity of the function f(x)= {((1-cos(2x))/(x^(2)),"if "x ne 0),(5",","if" x = 0):} at x=0

Examine the continuity of the function f(x) = {(|x|.cos ((1)/(x))",","if" x ne 0),(0",","if" x = 0):} at x= 0

Show that, f(x)= {((e^((1)/(x))-1)/(e^((1)/(x))+1)",",x ne 0),(0",",x=0):} . Is discontinuous at x= 0

Examine the continuity of the function f(x) = {(|x-a| sin ((1)/(x-a))",","if " x ne a),(0",","if' x = a):} at x=a