Home
Class 12
MATHS
Given f(x)={3-[cot^(-1)((2x^3-3)/(x^2))]...

Given `f(x)={3-[cot^(-1)((2x^3-3)/(x^2))]forx >0{x^2}cos(e^(1/x))forx<0` (where {} and [] denotes the fractional part and the integral part functions respectively). Then which of the following statements do/does hold good?

A

`f(0^(0-)) = 0`

B

`f(0^(+)) = 0`

C

`f(0) = 0 rArr` Continuous at x = 0

D

Irremovable discontinuity at x = 0

Text Solution

Verified by Experts

The correct Answer is:
A, B, C
Promotional Banner

Similar Questions

Explore conceptually related problems

Find domain f(x)=sqrt((2x+1)/(x^3-3x^2+2x))

If f(x)=cos^(- 1)x+cos^(- 1){x/2+1/2sqrt(3-3x^2)} then

Prove : 3cos^(-1)x=cos^(-1)(4x^(3)-3x),x in[1/2,1]

f(x)=2x+cot^(-1)x-log|x + sqrt(1+x^(2))| is …………..

Let f(x)=cos(a_1+x)+1/2cos(a_2+x)+1/(2^2)cos(a_3+x)++1/(2^(n-1))cos(a_n+x) where a)1,a_2 a_n in Rdot If f(x_1)=f(x_2)=0,t h e n|x_2-x_1| may be equal to pi (b) 2pi (c) 3pi (d) pi/2

Find the domain f(x)=(log_(2x)3)/(cos^(- 1)(2x-1)

Let tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-x^2)) , where |x|<1/(sqrt(3)) . Then a value of y is : (1) (3x-x^3)/(1-3x^2) (2) (3x+x^3)/(1-3x^2) (3) (3x-x^3)/(1+3x^2) (4) (3x+x^3)/(1+3x^2)

If f(x)= x^(3)- (1)/(x^(3)) then show that f(x)+ f((1)/(x))= 0

If |{:(x,e^(x-1),(x-1)^(3)),(x-lnx,cos(x-1),(x-1)^(2)),(tanx,sin^(2)x,cos^(2)x):}|=a_(0)+a_(1)(x-1)+a_(2)(x-1)^(2)cdots The value of cos^(-1) (a_(1)) is

Given (f(x) =log_(10) x and g(x) = e^(piix) . phi (x) =|{:(f(x).g(x),(f(x))^(g(x)),1),(f(x^(2)).g(x^(2)),(f(x^(2)))^(g(x^(2))),0),(f(x^(3)).g(x^(3)),(f(x^(3)))^(g(x^(3))),1):}| the value of phi (10), is