Home
Class 12
MATHS
Given: f(x)=4x^3 - 6x^2 cos 2 a + 3x sin...

Given: `f(x)=4x^3 - 6x^2 cos 2 a + 3x sin 2 a sin 6 a+ sqrt (In (2 a - a^2)` then

A

`af'((1)/(2))lt0`

B

`af'((1)/(2))le0`

C

`af'((1)/(2))gt0`

D

None of these

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Find x if 2 sin 3x = sqrt3

Solve sin 2x - sin 4x + sin 6x =0.

cos ^(2) 2x -cos ^(2) 6x = sin 4x sin 8x

(cos x- cos y) ^(2) + (sin x - sin y) ^(2) =4 sin ^(2) "" ( x-y)/(2)

(sin x + sin 3x )/( cos x + cos 3x )= tan 2x

If f(x)=-(x^(3))/(3)+x^(2)sin1.5a-xsina.sin2a-5sin^(-1)(a^(2)-8a+17) ,then

(cos x + cos y ) ^(2) + (sin x - sin y ) ^(2) = 4 cos ^(2) ""(x + y )/( 2)

Consider the equation 5 sin^2 x + 3 sin x cos x - 3 cos^2 x =2 .......... (i) sin^2 x - cos 2 x =2-sin 2 x ........... (ii) If alpha is a root of (i) and beta is a root of (ii), then tan alpha + tan beta can be equal to

If f(x)=|{:( sin^2 theta , cos^(2) theta , x),(cos^(2) theta , x , sin^(2) theta ),( x , sin^(2) theta , cos^2 theta ):}|, theta in (0,pi//2), then roots of f(x)=0 are

Consider the equation 5 sin^2 x + 3 sin x cos x - 3 cos^2 x =2 .......... (i) sin^2 x - cos 2 x =2-sin 2 x ........... (ii) The number of solutions common to (i) and (ii) is