Home
Class 12
MATHS
Let f(x) =int(-2)^xe^((1+t)^2)dt and g(x...

Let `f(x) =int_(-2)^xe^((1+t)^2)dt` and `g(x) = f(h(x))`,where h(x) is defined for all `x in R`. If `g'(2) = e^4` and `h' (2)=1` then absolute value of sum of all possible values of h(2), is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=sinx,g(x)=x^(2)andh(x)=logx. IF F(x)=h(f(g(x))), then F'(x) is

Let f(1)=-2, f'(x) ge4.2 for 1le x le6 . The smallest possible value of f(6)-16 is ……..

Let f(x)=x^2+xg'(1)+g''(2) and g(x)=f(1).x^2+xf'(x)+f''(x), then find f(x) and g(x).

Let F(x)=int_(sinx)^(cosx)e^((1+sin^(-1)(t))dt on [0,(pi)/(2)] , then

Let f(x)=x^(2)-2x and g(x)=f(f(x)-1)+f(5-f(x)), then

f(x)= x, g(x)= (1)/(x) and h(x)= f(x) g(x). If h(x) = 1 then…….

Let h(x) be differentiable for all x and let f(x)=(kx+e^(x))h(x) where k is some constant. If h(0)=5,h'(0)=-2and f'(0)=18 , then the value of k is equal to……………..

Let f(x) be a continuous function defined for 1 <= x <= 3. If f(x) takes rational values for all x and f(2)=10 then the value of f(1.5) is :

f(x)= 3x^(2)-1 and g(x)= 3 + x . If f= g then the value of x is…….

Let for a != a_1 != 0 , f(x)=ax^2+bx+c , g(x)=a_1x^2+b_1x+c_1 and p(x) = f(x) - g(x) . If p(x) = 0 only for x = -1 and p(-2) = 2 then the value of p(2) .