Home
Class 12
MATHS
If u=f(x^3),v=g(x^2),f^(prime)(x)=cosx ,...

If `u=f(x^3),v=g(x^2),f^(prime)(x)=cosx ,a n dg^(prime)(x)=sinx ,t h e n(d u)/(d v)` is `3/2xcosx^3cos e cx^2` `2/3sinx^3secx^2` `tanx` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

y=sinx+e^(x) then (d^(2)x)/(dy^(2)) is:

f(x)=cos^(2)x+cos^(2)(pi/3+x)-cosx*cos(x+pi/3) is

f_(n)(x)=e^(f_(n-1)(x))" for all "n in N and f_(0)(x)=x," then "(d)/(dx){f_(n)(x)} is

If the function f(x)=x^(3)+e^(x//2)andg(x)=f^(-1)(x) , then the value of g'(1) is

u= f (tan x), v= g(sec x), f'(1) =2 and g'(sqrt2)= 4 " then " (du)/(dv)|_(x = (pi)/(4)) =……….

If f(x)=sinx,g(x)=x^(2)andh(x)=logx. IF F(x)=h(f(g(x))), then F'(x) is

f(x)= sin^(2)x + sin^(2) (x + (pi)/(3)) + cos x cos (x + (pi)/(3)) then f'(x) = ………

Solve 2cos^(2)x+3sinx=0 .

If d/(dx) (f(x))^(n)=n(f(x))^(n-1)(df(x))/(dx) then (d)/(dx) (sin^3x)=3sin^(2)x.cosx .

f(x)= bx^(2) + cx and d and f(x+ 1) - f(x)= 8x + 3 then…….