Home
Class 12
MATHS
f:RrarrR,f(x)=x^(3)+x^(2)f'(1)+xf''(2)+f...

`f:RrarrR,f(x)=x^(3)+x^(2)f'(1)+xf''(2)+f'''(3)" for all "x in R.`
The value of f(1) is

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)+f(1-1/x)=1+x for x in R-{0,1}. Find the value of 4f(2).

f(x)=x^(3)+3x^(2)+3x+1 then f'(x) = …… .

If f:R rarr R satisfying f(x-f(y))=f(f(y))+xf(y)+f(x)-1, for all x,y in R , then (-f(10))/7 is ……… .

The function f(x)=x^(2)f(1)-xf'(2)+f''(3) such that f(0)=2 . The equation of tangent to y=f(x) at x = 3 is …………

f(x)= x^(2)-3x + 4 If f(x)= f(2x+1) find the value of x .

If the function f(x)=x^(3)+e^(x//2)andg(x)=f^(-1)(x) , then the value of g'(1) is

f(x)= 2x^(n) + a . If f(2)= 26 and f(4)= 138 then the value of f(3) is……..

Show f:R rarr R " defined by " f(x)=x^(2)+x " for all " x in R is many-one.

Let f:[1,oo) to [2,oo) be a differentiable function such that f(1)=2. If 6int_1^xf(t)dt=3xf(x)-x^3 for all xgeq1, then the value of f(2) is