Home
Class 12
MATHS
If for all x,y the function f is defined...

If for all `x,y` the function `f` is defined by `f(x)+f(y)+f(x).f(y)=1 andf(x)gt0.` Then show `f'(x)=0` when `f'(x)=0` is differentiable.

Promotional Banner

Similar Questions

Explore conceptually related problems

Discuss the continuity of the function f defined by f(x)= (1)/(x), x ne 0

The function f is defined by f(x)={(,1-x,x lt 0),(,1,x=0),(,x+1,x gt 0):} Draw the graph of f(x).

f(x)= x^(3) sgn(x). Show that f(x) is differentiable at x=0.

f:R rarr R, function f(x) is defined as f(x)= 2x +|x| then f(2x)+f(-x)-f(x) = ...........

Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is

f(x+ y) = f(x) f(y) , For AA x and y . If f(3)= 3 and f'(0) =11 then f'(3)= …….

The solution of (dy)/(dx)+yf'(x)-f(x).f'(x)=0,y!=f(x) is

If f(x)= x^(3)- (1)/(x^(3)) then show that f(x)+ f((1)/(x))= 0