Home
Class 12
MATHS
If f(x)=|x|^(|sinx|), then f'((pi)/(4)) ...

If `f(x)=|x|^(|sinx|)`, then `f'((pi)/(4))` equals

A

`-((pi)/(4))^(1sqrt2).((sqrt2)/(2)log"(4)/(pi)-(2sqrt2)/(pi))`

B

`-((pi)/(4))^(1sqrt2).((sqrt2)/(2)log"(4)/(pi)+(2sqrt2)/(pi))`

C

`((pi)/(4))^(1sqrt2).((sqrt2)/(2)log"(4)/(pi)-(2sqrt2)/(pi))`

D

`((pi)/(4))^(1sqrt2).((sqrt2)/(2)log"(4)/(pi)+(2sqrt2)/(pi))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = |cos x| , then f'((pi)/(4)) is equal to …… 0 lt x lt (pi)/(2)

If f(x)= |cos x- sin x| , then f'((pi)/(3)) is equal to …….

If f(x)=|cosx-sinx| , then f'(pi/4) is equal to

If f(x) = |cos x- sin x| then find f'((pi)/(6))

If f(x)=x sin x then f'(pi/2) = ……

If f'(x)=sinx+sin4x.cosx, then f'(2x^(2)+pi/2) is

If f(x)=|log_(e)|x||," then "f'(x) equals

If y=f((2x-1)/(x^(2)+1)) and f^'(x)=sinx^(2) , then (dy)/(dx) is equal to

If f(x)=sinx" then " 2f(x).f(90-x)=.... .