Home
Class 12
MATHS
xsqrt(1+y)+ysqrt(1+x)=0 then (dy)/(dx)=...

`xsqrt(1+y)+ysqrt(1+x)=0` then `(dy)/(dx)=`

A

`(1)/((1+x)^(2))`

B

`(-1)/((1+x)^(2))`

C

`(-1)/((1+x))+(1)/((1+x)^(2))`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin(x y)+cos(x y)=0 , then (dy)/(dx) is

if f'(x)=sqrt(2x^2-1) and y=f(x^2) then (dy)/(dx) at x=1 is:

If x sqrt(1 + y) + ysqrt(1 + x)= 0 , for -1 lt x lt 1 , prove that (dy)/(dx) = - (-1)/((1 + x)^(2))

(x + y )(dy)/(dx) = 1

If y=(sqrt(x)+1/sqrt(x)).(sqrt(x)-1/sqrt(x)) then dy/dx = ….. .

If y=sin^(-1)(3x-4x^(3)), then (dy)/(dx)=

If y=(x)/(x^(2)+1) , then find (dy)/(dx)

If x = sqrt(a^(sin^(-1)t)), y= sqrt(a^(cos^(-1)t)) , show that (dy)/(dx)= -(y)/(x)

If x=sqrt(a^sin^((-1)t)), y=sqrt(a^cos^((-1)t)) , show that (dy)/(dx)=-y/x

y= sqrt((1- sin 2x)/(1+ sin 2x)) then prove that (dy)/(dx) + sec^(2) ((pi)/(4)-x)= 0