Home
Class 12
MATHS
Let g be the inverse function of f and f...

Let `g` be the inverse function of `f and f'(x)=(x^(10))/(1+x^(2)).` If `g(2)=a` then `g'(2)` is equal to

A

`(5)/(2^(10))`

B

`(1+a^(2))/(a^(10))`

C

`(a^(10))/(1+a^(2))`

D

`(1+a^(10))/(a^(2))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=x+ sin x . Suppose g denotes the inverse function of f. The value of g'(pi/4+1/sqrt2) has the value equal to

If g is the inverse of fandf(x) = x^(2)+3x-3,(xgt0). then g'(1) equals

f(x)= x + tan x and f is an inverse function of g then g'(x)= ……..

f(x)= x + tan x and f is an inverse function of g then g'(x)= ……..

Let g(x) be the inverse of an invertible function f(x), which is differentiable for all x, then g''f(x) is equal to

If the function f(x)=x^(3)+e^(x//2)andg(x)=f^(-1)(x) , then the value of g'(1) is

If the functions f(x)=x^(5)+e^(x//3) " and " g(x)=f^(-1)(x) , the value of g'(1) is ………… .

If f(x)=ax+b and g(x)=cx+d, then f(g(x))=g(f(x)) is equivalent to

f:R to R is a function defined by f(x)= 10x -7, if g=f^(-1) then g(x)=