Home
Class 12
MATHS
If y is a function of x then (d^2y)/(dx^...

If `y` is a function of `x` then `(d^2y)/(dx^2)+y \ dy/dx=0.` If `x` is a function of `y` then the equation becomes

A

`(d^(2)x)/(dy^(2))+x(dx)/(dy)=0`

B

`(d^(2)x)/(dy^(2))+y((dx)/(dy))^(2)=0`

C

`(d^(2)x)/(dy^(2))-y((dx)/(dy))^(2)=0`

D

`(d^(2)x)/(dy^(2))-x((dx)/(dy))^(2)=0`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=5 cos x-3 sin x , prove that (d^(2)y)/(dx^(2)) + y= 0

(dy)/(dx) + (y)/(x) = x^(2)

If sin(x y)+cos(x y)=0 , then (dy)/(dx) is

If y= A sin x + B cos x , then prove that (d^(2)y)/(dx^(2)) +y= 0

If y=x^x , prove that (d^2y)/(dx^2)-1/y((dy)/(dx))^2-y/x=0

x(dy)/(dx) - y + x sin ((y)/(x)) = 0

If x^y+y^x=2, find (dy)/(dx) .

If y= sin (sin x) then show that, (d^(2)y)/(dx^(2)) + (tan x) (dy)/(dx) + y cos^(2)x = 0

The solution of x^(2)dy-y^(2)dx+xy^(2)(x-y)dy=0, is