Home
Class 12
MATHS
If y=(sin^(-1)(sinalphasinx)/(1-cosalpha...

If `y=(sin^(-1)(sinalphasinx)/(1-cosalphasinx))`, then `y'(0)` is equal to

A

1

B

`2tanalpha`

C

`((1)/(2))tanalpha`

D

`sinalpha`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1)x=y then,

If y= sqrt(sin x + y) , then (dy)/(dx) is equal to

If sin(x y)+cos(x y)=0 , then (dy)/(dx) is

(sin^(-1) x)^2 + (sin^(-1) y)^2 + 2(sin^(-1) x)(sin^(-1) y) = pi^2 , then x^2+y^2 is equal to

If (2sinalpha)/(1+cosalpha+sinalpha)=y , then prove that (1-cosalpha+sinalpha)/(1+sinalpha) is also equal to y.

If y=(f_(0)f_(0)f)(x)andf(0)=0,f'(0)=2 then y'(0) is equal to

If Delta_r=|[2^(r-1),1/(r(r+1)),sin rtheta],[x, y, z],[2^n-1, n/(n+1),((sin)(n+1)/2 theta (sin) n/2 theta) /(sintheta/2)]|, then sum_(r=1)^n Delta_r is equal to

Sketch the graph for y=sin^(-1)(sinx).

If x=cos^(-1)(cos 4) " and " y=sin^(-1)(sin3) , then which of the following holds? (a) x-y=1 (b) x+y+1=0 (c) x+2y=2 (d) x+y=3pi-7