Home
Class 12
MATHS
If x=f(t)cost-f^(prime)(t)sint and y=f(t...

If `x=f(t)cost-f^(prime)(t)sint` and `y=f(t)sint+f^(prime)(t)cost ,` then `((dx)/(dt))^2+((dy)/(dt))^2=` `f(t)-f"(t)` (b) `{f(t)-f"(t)}^2` (c) `{f(t)+f"(t)}^2` (d) none of these

A

`f(t)-f''(t)`

B

`[f(t)-f''(t)]^(2)`

C

`[f(t)+f''(t)]^(2)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

x= f(t), y= phi (t) then (d^(2)y)/(dx^(2)) = ……..

If x=a (cos t+ t sin t) and y= a (sin t - t cos t) , find (d^(2)y)/(dx^(2)) .

If x^(2)+y^(2)=t-(1)/(t)andx^(4)+y^(4)=t^(2)+(1)/(t^(2)), then ((dy)/(dx))_((1.1)) is…………

x=a sin t and y= a (cos t + log "tan"(t)/(2)) then find (d^(2)y)/(dx^(2)) .

If f(x)=overset(x)underset(0)t sin t dt, then f(x)=.....

If x=a t^2,\ \ y=2\ a t , then (d^2y)/(dx^2)= (a) -1/(t^2) (b) 1/(2\ a t^3) (c) -1/(t^3) (d) -1/(2\ a t^3)

If x=cost andy=sint , then prove that (dy)/(dx)=(1)/(sqrt3), at t=(2pi)/(3) .

If F(x) = (1)/(x^(2)) underset(4)overset(x)int (4t^(2)- 2F'(t))dt then F'(4) equals to ………

Let F(x)=int_(sinx)^(cosx)e^((1+sin^(-1)(t))dt on [0,(pi)/(2)] , then