Home
Class 12
MATHS
Let y=ln(1+cosx)^(2), then the value of(...

Let `y=ln(1+cosx)^(2)`, then the value of`(d^(2)y)/(dx^(2))+(2)/(e^(y//2))` equals

A

0

B

`(2)/(1+cosx)`

C

`(4)/((1+cosx))`

D

`(-4)/((1+cosx)^(2))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

(d^2x)/(d y^2) equals

((d^(2)y)/(dx^(2)))^(2) + cos ((dy)/(dx)) = 0

If e^(y) (x+ 1)=1 , show that (d^(2)y)/(dx^(2))= ((dy)/(dx))^(2)

If y=5 cos x-3 sin x , prove that (d^(2)y)/(dx^(2)) + y= 0

If y= A sin x + B cos x , then prove that (d^(2)y)/(dx^(2)) +y= 0

Solve (dy)/(dx)=e^(x-y)+x^(2)e^(-y) .

If y= sin^(-1)x then prove that (1-x^(2))(d^(2)y)/(dx^(2))-x (dy)/(dx)=0

If y=sinx+cosx" then "(d^(2)y)/(dx^(2)) is :-

Suppose 3 sin ^(-1) ( log _(2) x ) + cos^(-1) ( log _(2) y) =pi //2 " and " sin^(-1) ( log _(2) x ) + 2 cos^(-1) ( log_(2) y) = 11 pi//6 , then the value of x^(-2) + y^(-2) equals