Home
Class 12
MATHS
If f(x)=sin{(pi)/(3)[x]-x^(2)}" for "2lt...

If `f(x)=sin{(pi)/(3)[x]-x^(2)}" for "2ltxlt3` and [x] denotes the greatest integer less than or equal to x, then `f'"("sqrt(pi//3)")"` is equal to

A

`sqrt(pi//3)`

B

`-sqrt(pi//3)`

C

`-sqrt(pi)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the equation x^(3)-[x]=3 , where [x] denotes the greatest integer less than or equal to x .

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

If f(x)=cos{(pi)/(2)[x]-x^(3)},1 lt x lt 2and[x]= the greatest integer lex , then find f'(root(3)((pi)/(2)))

If [x] dnote the greatest integer less than or equal to x then the equation sin x=[1+sin x ]+[1-cos x ][ has no solution in

If f(x)= |cos x- sin x| , then f'((pi)/(3)) is equal to …….

f(x)= 1/sqrt([x]+x) , where [*] denotes the greatest integeral function less than or equals to x. Then, find the domain of f(x).

The number of solutions of |[x]-2x|=4, "where" [x]] is the greatest integer less than or equal to x, is

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

f(x)=sin^(-1)[2x^(2)-3] , where [*] denotes the greatest integer function. Find the domain of f(x).

domin of f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.