Home
Class 12
MATHS
The function u=e^x sinx ; v=e^x cos x sa...

The function `u=e^x sinx ; v=e^x cos x` satisfy the equation `v(d u)/(dx)-u(d v)/(dx)=u^2+v^2` b. `(d^2u)/(dx^2)=2v` c. `(d^2)/(dx^2)=-2u` d. `(d u)/(dx)+(d v)/(dx)=2v`

A

`v(du)/(dx)-u(dv)/(dx)=u^(2)+v^(2)`

B

`v(d^(2)u)/(dx^(2))=2v`

C

`(d^(2)v)/(dx^(2))=-2u`

D

All of these

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

(d)/(dx) (e^(5x)) = …….

((d^(2)y)/(dx^(2)))^(2) + cos ((dy)/(dx)) = 0

d/(dx) [Sec^(-1)e^(2x)]=?

The degree of the differential equation (d^(2)y)/(dx^(2))+3((dy)/(dx))^(2)=x^(2)log((d^(2)y)/(dx^(2))), is

If e^(y) (x+ 1)=1 , show that (d^(2)y)/(dx^(2))= ((dy)/(dx))^(2)

Verify that the function y = e^(-3x) is a solution of the differential equation (d^(2)y)/(dx^(2)) + (dy)/(dx) - 6y = 0

Differentiate the functions (1)/(x^(2))

Differentiate the functions x^(x)-2^(sin x)