Home
Class 12
MATHS
Statement I if f(0)=a,f'(0)=b,g(0)=0,(fo...

Statement I if `f(0)=a,f'(0)=b,g(0)=0,(fog)'(0)=c` then `g'(0)=(c)/(b).` Statement II `(f(g(x))'=f'(g(x)).g'(x),` for all `n`

A

Both statement I and Statement II are correct and Statement II is the correct explanation of Statement I

B

Both Statement I and Statement II are correct but Statement II is not the correct explanation of Statement I

C

Statement I is correct but Statement II is incorrect

D

Statement II is correct but Statement I is incorrect.

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(a)=-1,f'(a)=4,g(a)=1,g'(a)=-1 then lim_(xtoa)(g(x)f(a)-g(a)f(x))/(x-a)

Let fandg be real valued functions defined on interval (-1,1) such that g''(x) is constinous, g(0)!=0 , g'(0)=0,g''(0)!=0andf(x)=g(x)sinx . Statement I lim_(xrarr0)(g(x)cotx-g(0)cosecx)=f''(0) Statement II f'(0)=g(0)

If f(x)=ax+b and g(x)=cx+d, then f(g(x))=g(f(x)) is equivalent to

f(x)= x, g(x)= (1)/(x) and h(x)= f(x) g(x). If h(x) = 1 then…….

If f(x) - g(x) is constant then f'(x) = g'(x)

If f(x) is a twice differentiable function such that f(a)=0, f(b)=2, f(c)=-1,f(d)=2, f(e)=0 where a < b < c < d e, then the minimum number of zeroes of g(x) = f'(x)^2+f''(x)f(x) in the interval [a, e] is

If f(x)=sinx,g(x)=x^(2)andh(x)=logx. IF F(x)=h(f(g(x))), then F'(x) is

Let f(x)=x^2+xg'(1)+g''(2) and g(x)=f(1).x^2+xf'(x)+f''(x), then find f(x) and g(x).

If f'(x)=g'(x) , then . . . . . . .

If f(x)=(1)/((1-x)),g(x)=f{f(x)}andh(x)=f[f{f(x)}] . Then the value of f(x).g(x).h(x) is