Home
Class 12
MATHS
Consider function f(x) satisfies the rel...

Consider function `f(x)` satisfies the relation `f(x+y^(3))=f(x)+f(y^(3))AAx,yinRand` differentiable for all `x`.
Statement I If `f'(2)=a` then `f'(-2)=a`
`f(x)` is an odd function.

A

Both statement I and Statement II are correct and Statement II is the correct explanation of Statement I

B

Both Statement I and Statement II are correct but Statement II is not the correct explanation of Statement I

C

Statement I is correct but Statement II is incorrect

D

Statement II is correct but Statement I is incorrect.

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y), AA x, y in R . If f'(0) = - 1, then

The function f(x) satisfying the equation f^2 (x) + 4 f'(x) f(x) + (f'(x))^2 = 0

Statement 1: If differentiable function f(x) satisfies the relation f(x)+f(x-2)=0AAx in R , and if ((d/(dx)f(x)))_(x=a)=b ,t h e n((d/(dx)f(x)))_(a+4000)=bdot Statement 2: f(x) is a periodic function with period 4.

A function f:R->R satisfies the relation f((x+y)/3)=1/3|f(x)+f(y)+f(0)| for all x,y in R. If f'(0) exists, prove that f'(x) exists for all x, in R.

A function y = f(x) satisfies the condition f(x+(1)/x) =x^(2)+1/(x^2)(x ne 0) then f(x) = ........

A function f : R to R satisfies the equation f(x+y) = f (x) f(y), AA x, y in R and f (x) ne 0 for any x in R . Let the function be differentiable at x = 0 and f'(0) = 2. Show that f'(x) = 2 f(x), AA x in R. Hence, determine f(x)

The number or linear functions f satisfying f(x+f(x))=x+f(x) AA x in RR is

If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2) AA x in R and f(0)=f'(0)=1, then The value of underset(x to -oo)(lim)f(x) is

If f(x) satisfies the relation, f(x+y)=f(x)+f(y) for all x,y in R and f(1)=5, then find sum_(n=1)^(m)f(n) . Also, prove that f(x) is odd.

A function f : R rarr R satisfies the equation f(x + y) = f(x) . f(y) for all, f(x) ne 0 . Suppose that the function is differentiable at x = 0 and f'(0) = 2. Then,