Home
Class 12
MATHS
If f(x)=sin^(-1)(3x-4x^(3)). Then answer...

If `f(x)=sin^(-1)(3x-4x^(3)).` Then answer the following
The value of f'(0), is

A

-3

B

3

C

`sqrt2`

D

`-sqrt2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=sin^(-1)(3x-4x^(3)). Then answer the following The value of f'((1)/(sqrt2)) , is

If f(x)=sin^(-1)((2x)/(1+x^(2))), then Statement I The value of f(2)=sin^(-1)((4)/(5)) . Statement II f(x)=sin^(-1)((2x)/(1+x^(2)))=-2, for xlt1

If f(x)= x^(3)- (1)/(x^(3)) then show that f(x)+ f((1)/(x))= 0

If f(x)=2x^(2)-3x+5 then find the approximate value of f(1.05) .

If f'(x)=3x^(2)-(2)/(x^(3)) and f(1)=0 then find f(x).

f(x)=sin^(-1)((3-2x)/5)+sqrt(3-x) .Find the domain of f(x).

If the function f(x)=x^(3)+e^(x//2)andg(x)=f^(-1)(x) , then the value of g'(1) is

If f(x)=sin(3x)/sin x,x!=npi , then the range of values of f(x) for real values of x is

"If "f(x)=(x-1)^(4)(x-2)^(3)(x-3)^(2)(x-4), then the value of f'''(1)+f''(2)+f'(3)+f'(4) equals

f:RrarrR,f(x)=x^(3)+x^(2)f'(1)+xf''(2)+f'''(3)" for all "x in R. The value of f(1) is