Home
Class 12
MATHS
Let the derivative of f(x) be defined as...

Let the derivative of `f(x)` be defined as `D^(**)f(x)=lim_(hrarr0)(f^(2)(x+h)-f^(2)(x))/(h),` where `f^(2)(x)={f(x)}^(2)`.
If `u=f(x),v=g(x)`, then the value of `D^(**)(u.v)` is

A

`(D^(**)u)v+(D^(**)v)u`

B

`u^(2)(D^(**)v)+v^(2)(D^(**)u)`

C

`D^(**)u+D^(**)v`

D

`uvD^(**)(u+v)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)= x^(2)-3x + 4 If f(x)= f(2x+1) find the value of x .

Lim_(xrarr0)(f(Cosx))/(x^2) =? where f(x) = (1-x)/(1+x)

f(x)= 3x^(2)-1 and g(x)= 3 + x . If f= g then the value of x is…….

Let f(x)=x^(2)-2x and g(x)=f(f(x)-1)+f(5-f(x)), then

If f(x)=(1)/((1-x)),g(x)=f{f(x)}andh(x)=f[f{f(x)}] . Then the value of f(x).g(x).h(x) is

Find the anti derivative F of f defined by f (x) = 4x^(3) - 6 , where F (0) = 3

f(x)= x, g(x)= (1)/(x) and h(x)= f(x) g(x). If h(x) = 1 then…….

Find lim_(xrarr0)f(x) and lim_(xrarr1)f(x) , where f(x)={{:(2x+3",",xle0),(3(x+1)",",xgt0):}

If the function f(x) satisfies lim_(xrarr1)(f(x)-2)/(x^(2)-1)=pi , evaluate lim_(xrarr1)f(x) .

Find the derivative of f form the first principle. Where f is give by , f(x)=(2x+3)/(x-2)