Home
Class 12
MATHS
If f(x)=x^(3)+x^(2)f'(1)+xf''(2)+xf''(2)...

If `f(x)=x^(3)+x^(2)f'(1)+xf''(2)+xf''(2)+f'''(3)` for all `x"inR.` then find `f(x)` independent of `f'(1),f''(2)andf'''(3).`

Text Solution

Verified by Experts

The correct Answer is:
4
Promotional Banner

Similar Questions

Explore conceptually related problems

f:RrarrR,f(x)=x^(3)+x^(2)f'(1)+xf''(2)+f'''(3)" for all "x in R. The value of f(1) is

If f(x)= x^(2 )+ 2x + 3 then find f(1), f(2), f(3)

f(x)=x^(3)+3x^(2)+3x+1 then f'(x) = …… .

If f'(x)=sqrtx and f(1)=2 then find f(x).

Let f(x)=x^2+xg'(1)+g''(2) and g(x)=f(1).x^2+xf'(x)+f''(x), then find f(x) and g(x).

If f(x)= 3x^(4)- 5x^(2) + 9 then find f(x-1) .

If f'(x)=x-(1)/(x^(2)) and f(1)=(1)/(2) then find f(x).

If f'(x)=3x^(2)-(2)/(x^(3)) and f(1)=0 then find f(x).

f(x)= x^(2)-3x + 4 If f(x)= f(2x+1) find the value of x .