Home
Class 12
MATHS
If x^(2)+y^(2)=t-(1)/(t)andx^(4)+y^(4)=t...

If `x^(2)+y^(2)=t-(1)/(t)andx^(4)+y^(4)=t^(2)+(1)/(t^(2)),` then `((dy)/(dx))_((1.1))` is…………

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2) + y^(2) =t - (1)/(t) and x^(4) + y^(4) = t^(2) + (1)/(t^(2)) " then " x^(3)y (dy)/(dx) = ……

If x^(2) + y^(2) =t - (1)/(t) and x^(4) + y^(4) = t^(2) + (1)/(t^(2)) " then " x^(3)y (dy)/(dx) = ……

If x=e^(-t^(2)), y=tan^(-1)(2t+1) , then (dy)/(dx)=

If x=sin^(-1)((2t)/(1+t^(2)))andy=tan^(-1)((2t)/(1-t^(2))), then prove that (dy)/(dx)=1 .

Find (dy)/(dx) : x=t + (1)/(t) and y= t - (1)/(t)

If x= t^(2) and y= t^(3) , then (d^(2)y)/(dx^(2)) is equal to

If x= t^(2) and y= t^(3) , then (d^(2)y)/(dx^(2)) is equal to

x= f(t), y= phi (t) then (d^(2)y)/(dx^(2)) = ……..