Home
Class 12
MATHS
If y is twice differentiable function of...

If y is twice differentiable function of x, then the expression `(1-x^(2)).(d^(2)y)/(dx^(2))-x(dy)/(dx)+y` by means of the transformation `x=sint` in terms of t is `(d^(2)y)/(dt^(2))+lambday`. Thus `lambda` is….

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Similar Questions

Explore conceptually related problems

If y= sin^(-1)x then prove that (1-x^(2))(d^(2)y)/(dx^(2))-x (dy)/(dx)=0

If y= sin^(-1)x , show that (1 -x^(2)) (d^(2)y)/(dx^(2))-x (dy)/(dx)=0

The order of the differential equation 2x^(2) (d^(2)y)/(dx^(2))-3(dy)/(dx) + y = 0 is

Solve y-x(dy)/(dx)=a(y^(2)+(dy)/(dx))

x^(2)(dy)/(dx) = x^(2) - 2y^(2) + xy

If y=Acos(logx)+B sin(logx) then prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0 .

If y= e^(cos^(-1)x), -1 le x le 1 , then prove that (1-x^(2)) (d^(2)y)/(dx^(2))-x (dy)/(dx)- y= 0

If y= e^(tan x) then show that, (cos^(2)x) (d^(2)y)/(dx^(2))- (1+ sin 2x) (dy)/(dx)=0

If y= 3e^(2x) + 2e^(3x) , prove that (d^(2)y)/(dx^(2))-5 (dy)/(dx) + 6y= 0