Home
Class 12
MATHS
The derivative of f(x)=cos^(-1)((1)/(sqr...

The derivative of `f(x)=cos^(-1)((1)/(sqrt3)(2cosx-3sinx))+sin^(-1)((1)/(sqrt3)(2cosx+3sinx))` w.r.t. `sqrt(1+x^(2))` at `x=(1)/(sqrt3)`is.........

Text Solution

Verified by Experts

The correct Answer is:
2
Promotional Banner

Similar Questions

Explore conceptually related problems

The derivative of the function, f(x)=cos^(-1){(1)/(sqrt13)(2cosx-3sinx)}+sin^(-1){(1)/(sqrt13)(2cosx+3sinx)} w.r.t. sqrt(1+x^(2)) at x=(3)/(4) is

(x+1) sqrt(2x^(2)+3)

Find the derivative of sec^(-1)((1)/(2x^(2)-1))" w.r.t. "sqrt(1-x^(2))" at "x=(1)/(2).

If f(x)=cos^(- 1)x+cos^(- 1){x/2+1/2sqrt(3-3x^2)} then

cos^(-1)(sqrt3/2)+2sin^(-1)(sqrt3/2) is _____

Evaluate : cos[cos^(-1)((-sqrt3)/2)+pi/6]

Differentiate log sinx w.r.t. sqrt(cosx)

cos^(- 1)x=2sin^(- 1)sqrt((1-x)/2)=2cos^(- 1)sqrt((1+x)/2)

Differentiate sin^(-1)(4xsqrt(1-4x^(2)))w.r.t.sqrt(1-4x^(2)) , if x in(-(1)/(2sqrt2),(1)/(2sqrt2))

If x in((1)/(sqrt2)1). Differentiate tan^(-1)(sqrt(1-x^(2))/(x)) w.r. t. cos^(-1)(2xsqrt(1-x^(2))).