Home
Class 12
MATHS
Suppose A=(dy)/(dx) of x^(2)+y^(2)=4 at ...

Suppose `A=(dy)/(dx)` of `x^(2)+y^(2)=4` at `(sqrt2,sqrt2), B=(dy)/(dx)` of `sin y+sinx=sinx.siny` at `(pi,pi)andC=(dy)/(dx)` of `2e^(xy)+e^(x)e^(y)-e^(x)-e^(y)=e^(xy+1)` at `(1,1),` then `(A-B-C)` has the value equal to.......

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Similar Questions

Explore conceptually related problems

(dy)/(dx) + 3y = e^(-2x)

Solve (dy)/(dx)=e^(x-y)+x^(2)e^(-y) .

(e^(x) + e^(-x))dy - (e^(x) - e^(-x)) dx = 0

If sqrt(y+x)+sqrt(y-x)=c, where cne0 , then (dy)/(dx) has the value equal to

If y=e^(x)sin x , then find (dy)/(dx)

If x=e^(-t^(2)), y=tan^(-1)(2t+1) , then (dy)/(dx)=

x dy - y dx = sqrt(x^(2) + y^(2)) dx

x^(2)(dy)/(dx) = x^(2) - 2y^(2) + xy

e^(x) + e^(y) = e^(x+ y) then prove that, (dy)/(dx) + (e^(x) (e^(y)-1))/(e^(y) (e^(x)-1))=0

e^(x) tan y dx + (1 - e^(x))sec^(2)y dy = 0