Home
Class 12
MATHS
If log (x^2+y^2)=2t a n^(-1)\ (y/x), the...

If log `(x^2+y^2)=2t a n^(-1)\ (y/x),` then show that `(dy)/(dx)=(x+y)/(x-y)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x= e^((x)/(y)) , then prove that (dy)/(dx)= (x-y)/(x.log x)

If y^(x)= e^(y-x) , then prove that (dy)/(dx)= ((1+ log y)^(2))/(log y)

If e^(y) (x+ 1)=1 , show that (d^(2)y)/(dx^(2))= ((dy)/(dx))^(2)

If x^(m).y^(n)= (x+ y)^(m+n) then show that, (d^(2)y)/(dx^(2))=0

If y= sin^(-1)x , show that (1 -x^(2)) (d^(2)y)/(dx^(2))-x (dy)/(dx)=0

(dy)/(dx) + (y)/(x) = x^(2)

If y=xlog(x/(a+bx)) , then prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2

If y= sin^(-1)x then prove that (1-x^(2))(d^(2)y)/(dx^(2))-x (dy)/(dx)=0

If x^(m).y^(n)= (x + y)^(m+n) , prove that (dy)/(dx)= (y)/(x)