Home
Class 12
MATHS
જો sin y=xsin(a+y), તો સાબિત કરો કે dy/...

જો `sin y=xsin(a+y)`, તો સાબિત કરો કે `dy/dx=sin^2(a+y)/sin a`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x sin (a + y) + sin a cos (a + y)= 0 , then prove that (dy)/(dx)= (sin^(2) (a + y))/(sin a)

If sin y= x sin (a+ y) and (dy)/(dx)= (A )/(1 + x^(2)-2x cos a) then the value of A is …… [a] 2 [b] CosA [c] SinA [d] 1/2

If cos y= x cos (a + y) , with cos a ne +- 1 , prove that (dy)/(dx) = (cos^(2) (a + y))/(sin a)

Solve (dy)/(dx)=sin^(2) (x+3y)+5

Plot y=sinxa n dy=sin2xdot

If y= sin (sin x) then show that, (d^(2)y)/(dx^(2)) + (tan x) (dy)/(dx) + y cos^(2)x = 0

If y=e^(x)sin x , then find (dy)/(dx)

The solution of the differential equation (dy)/(dx)=(siny+x)/(sin2y-xcosy) is (a) sin^(2) y= xsiny+(x^(2))/(2)+C (b) sin^(2) y= xsiny-(x^(2))/(2)+C ( c ) sin^(2) y= x+siny+(x^(2))/(2)+C (d) sin^(2) y= x-siny+(x^(2))/(2)+C

The solution of xsin((y)/(x))dy={ysin((y)/(x))-x}dx, is given by