Home
Class 12
MATHS
જો x=e^(cos2t) અને y=e^(sin2t) તો સા...

જો `x=e^(cos2t) ` અને `y=e^(sin2t) ` તો સાબિત કરો કે `dy/dx= (-ylogx)/(xlogy)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) : x= e^(cos 2t) and y= e^(sin 2t) show that, (dy)/(dx)= (-y log x)/(x log y)

If y=e^(x)sin x , then find (dy)/(dx)

If y^(x)= e^(y-x) , then prove that (dy)/(dx)= ((1+ log y)^(2))/(log y)

If x^(y)=e^(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2)).

(dy)/(dx) + 3y = e^(-2x)

If x=a (cos t+ t sin t) and y= a (sin t - t cos t) , find (d^(2)y)/(dx^(2)) .

If x = sqrt(a^(sin^(-1)t)), y= sqrt(a^(cos^(-1)t)) , show that (dy)/(dx)= -(y)/(x)