Home
Class 12
MATHS
If x=sin^(-1)((2t)/(1+t^(2)))andy=tan^(-...

If `x=sin^(-1)((2t)/(1+t^(2)))andy=tan^(-1)((2t)/(1-t^(2))),` then prove that `(dy)/(dx)=1`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=e^(-t^(2)), y=tan^(-1)(2t+1) , then (dy)/(dx)=

If x=a(t+1/t) and y=a(t-1/t) , prove that (dy)/(dx)=x/y

Differentiate tan^(-1)((2x)/(1-x^(2))) w.r.t. sin^(-1)((2x)/(1+x^(2))).

If x^(2)+y^(2)=t-(1)/(t)andx^(4)+y^(4)=t^(2)+(1)/(t^(2)), then ((dy)/(dx))_((1.1)) is…………

If log (x^2+y^2)=2t a n^(-1)\ (y/x), then show that (dy)/(dx)=(x+y)/(x-y)

If f(x)=lim_(t to 0)[(2x)/(pi).tan^(-1)(x/(t^(2)))] ,then f(1) is …….

If t = (1)/(1-root4(2)) then t equals

If x=sqrt(a^sin^((-1)t)), y=sqrt(a^cos^((-1)t)) , show that (dy)/(dx)=-y/x