Home
Class 12
MATHS
If y=(sinx)^(tanx)+(cos x)^(secx), find ...

If `y=(sinx)^(tanx)+(cos x)^(secx)`, find `(dy)/(dx).`

Text Solution

Verified by Experts

The correct Answer is:
`(sinx)^(tanx).{sec^(2)x(logsinx)+1}+(cosx)^(secx).{secxtanxlog(cosx)-secxtanx}`
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^y+y^x=2, find (dy)/(dx) .

If (cosx)^(y)=(siny)^(x), then find (dy)/(dx) .

If y= x^(x^(x)) then find (dy)/(dx)

If y=(secx-tanx)/(secx+tanx), then (dy)/(dx) equals.

If y= x^(x) + x^(a) + a^(x) then find (dy)/(dx)

if y=(xsinx)/(log_(e)x), then find (dy)/(dx)

If y=(x)/(x^(2)+1) , then find (dy)/(dx)

If y=e^(x)tanx+x.log_(e)x, then find (dy)/(dx)

If x^(y)= e^(x-y) , then find (dy)/(dx)

If y=tan^(-1)((1-cosx)/(sinx)), then (dy)/(dx) is