Home
Class 12
MATHS
If x^(y)=e^(x-y), prove that (dy)/(dx)=(...

If `x^(y)=e^(x-y)`, prove that `(dy)/(dx)=(logx)/((1+logx)^(2)).`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y^(x)= e^(y-x) , then prove that (dy)/(dx)= ((1+ log y)^(2))/(log y)

If x^(y)= e^(x-y) , then find (dy)/(dx)

If x= e^((x)/(y)) , then prove that (dy)/(dx)= (x-y)/(x.log x)

int (logx)/((1+logx)^(2))dx =....

If x^(m).y^(n)= (x + y)^(m+n) , prove that (dy)/(dx)= (y)/(x)

If sqrt(1-x^(2)) + sqrt(1 -y^(2))= a(x-y) , then prove that (dy)/(dx)= sqrt((1-y^(2))/(1-x^(2))) . (Where |x| le 1, |y| le 1 )

If x=a(t+1/t) and y=a(t-1/t) , prove that (dy)/(dx)=x/y

e^(x) + e^(y) = e^(x+ y) then prove that, (dy)/(dx) + (e^(x) (e^(y)-1))/(e^(y) (e^(x)-1))=0

If x sqrt(1 + y) + ysqrt(1 + x)= 0 , for -1 lt x lt 1 , prove that (dy)/(dx) = - (-1)/((1 + x)^(2))