Home
Class 12
MATHS
If (cosx)^(y)=(siny)^(x), then find (dy)...

If `(cosx)^(y)=(siny)^(x),` then find `(dy)/(dx)`.

Text Solution

Verified by Experts

The correct Answer is:
`(logsiny+ytanx)/(logcosx-xcoty)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(y)= e^(x-y) , then find (dy)/(dx)

If y=e^(x)sin x , then find (dy)/(dx)

If y= x^(x^(x)) then find (dy)/(dx)

If y=(x)/(x^(2)+1) , then find (dy)/(dx)

if y=(xsinx)/(log_(e)x), then find (dy)/(dx)

If y= x^(x) + x^(a) + a^(x) then find (dy)/(dx)

If y=(sinx)^(tanx)+(cos x)^(secx) , find (dy)/(dx).

If x^y+y^x=2, find (dy)/(dx) .

If y=tan^(-1)((1-cosx)/(sinx)), then (dy)/(dx) is

If y= x^(tan x) + sqrt((x^(2) + 1)/(x)) then find (dy)/(dx)