Home
Class 12
MATHS
if y = e^((x)^(e^x)) + x^(e^(e^x)) + e^(...

if `y = e^((x)^(e^x)) + x^(e^(e^x)) + e^(x^(x^e))`, then dy/dx`=e^((x)^(e^x)) x^(e^x)[e^xlogx+e^x/x]+ x^(e^(e^x)) e^(e^x)[1/x+e^xlogx]+e^(x^(x^e))x^(x^e)x^(e-1)[1+elogx]`

Promotional Banner

Similar Questions

Explore conceptually related problems

int e^(e^(e^(x))) * e^(e^(x))*e^(x)dx = + c

(e^(x) + e^(-x))dy - (e^(x) - e^(-x)) dx = 0

y= e^(x+ e^(x+ e^(x+ ....oo))) then find (dy)/(dx)

If x^(y)= e^(x-y) , then find (dy)/(dx)

(dy)/(dx) + 3y = e^(-2x)

If e^x + e^y = e^(x+y) then (dy )/( dx) =……..

e^(x) + e^(y) = e^(x+ y) then prove that, (dy)/(dx) + (e^(x) (e^(y)-1))/(e^(y) (e^(x)-1))=0

Evaluate : int (e^(5x)+e^(3x))/(e^(x)+e^(-x)) dx

(d)/(dx) (e^(5x)) = …….