Home
Class 12
MATHS
Find the derivative of tan^(-1).(2x)/(1-...

Find the derivative of `tan^(-1).(2x)/(1-x^(2))w.r.t. sin^(-1).(2x)/(1+x^(2)),` If `x in (-oo,-1)`

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the derivative of tan^(-1)((2x)/(1-x^2))wdotrdottsin^(-1)((2x)/(1+x^2) )

Differentiate tan^(-1)((2x)/(1-x^(2))) w.r.t. sin^(-1)((2x)/(1+x^(2))).

The derivative of cos^(-1) (2x^(2)-1) w.r.t cos^(-1)x is

Find the derivate of (2)/(x+1)-(x^(2))/(3x-1)

Find the derivative of sec^(-1)((1)/(2x^(2)-1))" w.r.t. "sqrt(1-x^(2))" at "x=(1)/(2).

Find the derivative of tan^(-1) [(sqrt(1+x^(2))-1)/(x)] with respect to tan^(-1) ((2x)/(1-x^(2)))

Statement I Derivative of sin^(-1)((2x)/(1+x^(2)))w.r.t. cos^(-1)((1-x^(2))/(1+x^(2))) is 1 for 0ltxlt1. sin^(-1)((2x)/(1+x^(2)))=cos^(-1)((1-x^(2))/(1+x^(2))) for -1lexle1 (a)Both statement I and Statement II are correct and Statement II is the correct explanation of Statement I(b)Statement I is correct but Statement II is incorrect

Find the domain for f(x)=sin^(-1)((1+x^2)/(2x))

Differentiate sin^(-1)((2x)/(1+x^(2))) w. r. t. tan^(-1)x, -1 lt x lt 1 .