Home
Class 12
MATHS
Differentiate tan^(-1)((2x)/(1-x^(2))) w...

Differentiate `tan^(-1)((2x)/(1-x^(2)))` w.r.t. `sin^(-1)((2x)/(1+x^(2))).`

Text Solution

Verified by Experts

The correct Answer is:
-1
Promotional Banner

Similar Questions

Explore conceptually related problems

If x in((1)/(sqrt2)1). Differentiate tan^(-1)(sqrt(1-x^(2))/(x)) w.r. t. cos^(-1)(2xsqrt(1-x^(2))).

Statement I Derivative of sin^(-1)((2x)/(1+x^(2)))w.r.t. cos^(-1)((1-x^(2))/(1+x^(2))) is 1 for 0ltxlt1. sin^(-1)((2x)/(1+x^(2)))=cos^(-1)((1-x^(2))/(1+x^(2))) for -1lexle1 (a)Both statement I and Statement II are correct and Statement II is the correct explanation of Statement I(b)Statement I is correct but Statement II is incorrect

Differentiate sin^(-1)((2x)/(1+x^(2))) w. r. t. tan^(-1)x, -1 lt x lt 1 .

Differentiate sin^(-1)(2axsqrt(1-a^(2)x^(2)))w.r.t.sqrt(1-a^(2)x^(2)).

Differentiate the functions (1)/(x^(2))

Differentiate tan^(-1) ((sqrt(1+x^(2))-1)/(x)) w.r.t tan^(-1)x , where x ne 0

Differentiate sin^(-1)(4xsqrt(1-4x^(2)))w.r.t.sqrt(1-4x^(2)) , if x in(-(1)/(2sqrt2),(1)/(2sqrt2))

Differentiate sec^(- 1)((x+1)/(x-1))+sin^(- 1)((x-1)/(x+1))

Differentiate cos (tan sqrt(x+ 1))

Differentiate the following w.r.t.x. sin^(-1)((2^(x+1))/(1+4^(x)))