Home
Class 12
MATHS
Differentiate sin^(-1)(4xsqrt(1-4x^(2)))...

Differentiate `sin^(-1)(4xsqrt(1-4x^(2)))w.r.t.sqrt(1-4x^(2))`, if `x in(-(1)/(2sqrt2),(1)/(2sqrt2))`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(x)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate sin^(-1)(2axsqrt(1-a^(2)x^(2)))w.r.t.sqrt(1-a^(2)x^(2)).

Differentiate sin^(-1) ((1)/(sqrt(x + 1)))

Differentiate log (x + sqrt(x^(2) + a))

Differentiate tan^(-1)((2x)/(1-x^(2))) w.r.t. sin^(-1)((2x)/(1+x^(2))).

Differentiate sin^(-1)((2x)/(1+x^(2))) w. r. t. tan^(-1)x, -1 lt x lt 1 .

Differentiate sin^(2)x w.r.t e^(cos x)

Differentiate tan^(-1) ((sqrt(1+x^(2))-1)/(x)) w.r.t tan^(-1)x , where x ne 0

Find the derivative of sec^(-1)((1)/(2x^(2)-1))" w.r.t. "sqrt(1-x^(2))" at "x=(1)/(2).

Differentiate the following w.r.t.x. (xsin^(-1)x)/(sqrt(1-x^(2)))+logsqrt(1-x^(2)),|x|lt1

If x in((1)/(sqrt2)1). Differentiate tan^(-1)(sqrt(1-x^(2))/(x)) w.r. t. cos^(-1)(2xsqrt(1-x^(2))).