Home
Class 12
MATHS
If y=Acos(logx)+B sin(logx) then prove t...

If `y=Acos(logx)+B sin(logx)` then prove that `x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y= sin^(-1)x then prove that (1-x^(2))(d^(2)y)/(dx^(2))-x (dy)/(dx)=0

If y= sin^(-1)x , show that (1 -x^(2)) (d^(2)y)/(dx^(2))-x (dy)/(dx)=0

If y= e^(cos^(-1)x), -1 le x le 1 , then prove that (1-x^(2)) (d^(2)y)/(dx^(2))-x (dy)/(dx)- y= 0

If y=xlog(x/(a+bx)) , then prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2

If y= 3e^(2x) + 2e^(3x) , prove that (d^(2)y)/(dx^(2))-5 (dy)/(dx) + 6y= 0

((d^(2)y)/(dx^(2)))^(2) + cos ((dy)/(dx)) = 0

If y= A sin x + B cos x , then prove that (d^(2)y)/(dx^(2)) +y= 0

If y=x^x , prove that (d^2y)/(dx^2)-1/y((dy)/(dx))^2-y/x=0