Home
Class 12
MATHS
If x=f(t) and y=phi(t), prove that (d^2y...

If `x=f(t) and y=phi(t),` prove that `(d^2y)/(dx^2)=(f_1phi_2-f_2phi_1)/(f_1^3)` where suffixes denote differentiation `w.r.t.t.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=a(t+1/t) and y=a(t-1/t) , prove that (dy)/(dx)=x/y

x= f(t), y= phi (t) then (d^(2)y)/(dx^(2)) = ……..

Differentiate the following w.r.t.x

If x= t^(2) and y= t^(3) , then (d^(2)y)/(dx^(2)) is equal to

If x= t^(2) and y= t^(3) , then (d^(2)y)/(dx^(2)) is equal to

if f'(x)=sqrt(2x^2-1) and y=f(x^2) then (dy)/(dx) at x=1 is:

Differentiate the following w.r.t.x. x^(x^2)

Solve (dy)/(dx)=(yphi'(x)-y^(2))/(phi(x)),"where" " "phi(x) is a given function.

If x=a (cos t+ t sin t) and y= a (sin t - t cos t) , find (d^(2)y)/(dx^(2)) .