Home
Class 12
MATHS
If x=sint,y=sinKt then show that (1-x^(2...

If `x=sint,y=sinKt` then show that `(1-x^(2))y_2-xy_(1)+K^(2)y=0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y= sin (pt), x= sin t , then prove that (1- x^(2))y_(2)-xy_(1)+ p^(2)y= 0

If 2x= y^((1)/(m)) + y^(-(1)/(m)) (n ge 1) then prove that, (x^(2)-1) y_(2) + xy_(1) = m^(2)y

If y= (x + sqrt(x^(2) + 1))^(m) then prove that, (x^(2)+1) y_(2) + xy_(1)= m^(2)y

If y=log (x + sqrt(x^(2) + 1)) then show that, (x^(2) + 1) (d^(2)y)/(dx^(2)) + x (dy)/(dx)= 0

If y = e^(a cos^(-1)x) show that (1-x^(2)) (d^(2)y)/(dx^(2))-x (dy)/(dx) -a^(2)y= 0 . Where -1 le x le 1

If y= sin^(-1)x , show that (1 -x^(2)) (d^(2)y)/(dx^(2))-x (dy)/(dx)=0

If x^(m).y^(n)= (x+ y)^(m+n) then show that, (d^(2)y)/(dx^(2))=0

If y= 3 cos (log x) + 4 sin (log x) , show that x^(2)y_(2) + xy_(1) + y= 0

If y= (tan^(-1) x)^(2) show that (x^(2) + 1)^(2) y_(2) + 2x (x^(2) + 1)y_(1) = 2