Home
Class 12
MATHS
Find the domain for f(x)=sin^(-1)((x^(2)...

Find the domain for `f(x)=sin^(-1)((x^(2))/(2))`.

Text Solution

Verified by Experts

The correct Answer is:
`f(x) in [-sqrt(2),sqrt(2)]`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the domain for f(x)=sin^(-1)((1+x^2)/(2x))

Find domain for, f(x)=cos^(-1)[x] .

The domain of f(x)=(log(sin^(-1)sqrt(x^(2)+x+1)))/(log(x^(2)-x+1)) is

Find domain of f(x)=sqrt(log_(1/2)((5x-x^2)/4))

find the domain of f(x)=sin|x|+sin^(-1)(tanx)+sin(sin^(-1)x)

Find the domain? f(x)=sqrt((x^2+4x)C_(2x^2+3))

Find domain of f(x)=log_(10)(1+x^(3)) .

Find the domain of f(x)=sqrt(((1-5^x)/(7^(-x)-7)))

Find domain of sin^(-1) ( 2 x^(2) - 1)

Find domain for f(x)=sqrt(cos (sin x))